• 显著性分析 > 相关系数的显著性检验(一)
  • 相关系数的显著性检验(一)

    免费下载 下载该文档 文档格式:DOC   更新时间:2014-07-31   下载次数:0   点击次数:1
    相关系数的显著性检验(一) 现在讨论线性相关的显著性检验中最简便、最常用的一种方法,即相关系数的显著性检验法.我们早在前面的学习中知道,变量与的相关系数是表示与之间线性相关关系的一个数字特征,因此,要检验随机变量与变量之间的线性相关关系是否显著,自然想到考察相关系数的大小,若相关系数的绝对值很小,则表明与之间的线性相关关系不显著,或者它们之间根本不存在线性相关关系;当且仅当相关系数的绝对值接近1时,才表明与之间的线性相关关系显著,这时求关于的线性回归方程才有意义.在相关系数未知的情况下,可用样本相关系数r作为相关系数的估计值,参照相关系数的定义,并用样本均值与样本方差分别作为数学期望与方差的估计值,定义与的样本相关系数如下: 因此,根据试验数据(,),得到的值后可进一步算出样本相关系数r的值. 若使用的是具有线性回归计算功能的电子计算器时,把所有试验数据(,)逐对存入计算器中,则可直接算出r的值. 由于样本相关系数r是相关系数的估计值,所以,r的绝对值越接近1,与之间的线性相关关系越显著. 当r>0时,称与正相关;当r<0时,称与负相关. 而当r的绝对值接近0时,则可认为与之间不存在线性相关关系.
  • 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
  • 免费下载 DOC格式下载
  • 您可能感兴趣的
  • spss显著性分析  spss差异显著性分析  excel差异显著性分析  excel显著性分析  spss显著性分析步骤  origin显著性分析  dps显著性分析  graphpad显著性分析  显著性分析方法  spss显著性分析标星号