Then Abel's lemma on summation by parts can be modified as follows:
n1 n1
Bk
k=0
Ak = An1 Bn A1 B0
k=0
Ak Bk .
This can be considered as the discrete counterpart for the integral formula
b b
f (x)g (x)dx = f (b)g(b) f (a)g(a)
a a
f (x)g(x)dx.
In fact, it is almost trivial to check the following expression
n1 n1 n1 n1
Bk
k=0
Ak =
k=0
Bk Ak Ak1 =
k=0
Ak B k
k=0
Ak1 Bk .
Replacing k by k + 1 for the last sum, we can reformulate the equation as follows
n1 n1
Bk
k=0
Ak = An1 Bn A1 B0 +
k=0 n1
Ak Bk Bk+1
= An1 Bn A1 B0
k=0
Ak Bk ,
which is exactly the equality stated in the modified Abel lemma.
Partial Sums of Two Quartic q-Series
3
Throughout the paper, if Wn is used to denote the partial sum of some q-series, then the corresponding letter W without subscript will stand for the limit of Wn (if it exists of course) when n → ∞. When applying the modified Abel lemma on summation by parts to deal with hypergeometric series, the crucial step lies in finding shifted factorial fractions {Ak , Bk } so that their differences are expressible as ratios of linear factors. This has not been an easy task, even though it is indeed routine to factorize {Ak , Bk } once they are figured out. Specifically for Un (a, b, d) and Vn (a, b, d), we shall devise three well-poised difference pairs for each partial sum. This is based on numerous attempts to detect Ak and Bk sequences such that not only their differences turn out to be factorizable, but also their combinations match exactly the summands displayed in Un (a, b, d) and Vn (a, b, d). The contents of the paper will be organized as follows. In the second section, Un (a, b, d) will be reformulated through the modified Abel lemma on summation by parts, which lead to three transformations of Un (a, b, d) into partial sums of quadratic, cubic and quartic series. Then the third section will be devoted to the transformation formulae of Vn (a, b, d) in terms of partial sums of quadratic, cubic and quartic series. These transformations on Un (a, b, d) and Vn (a, b, d) will recover several known identities appeared in Chu–Wang [4, 8] and Gasper–Rahman [12], and yield a few additional new summation formulae.
- chang > chuwenchang@unileit
-
chuwenchang@unileit
下载该文档 文档格式:PDF 更新时间:2009-04-02 下载次数:0 点击次数:1文档基本属性 文档语言: 文档格式: pdf 文档作者: loubo 关键词: 主题: 备注: 点击这里显示更多文档属性 经理: 单位: ttnet 分类: 创建时间: 上次保存者: loubo 修订次数: 1 编辑时间: 文档创建者: 修订: 加密标识: 幻灯片: 8 段落数: 31 字节数: 625296 备注: 0 演示格式: 屏幕显示 上次保存时间:
- 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
- PDF格式下载
- 更多文档...
-
上一篇:wschang1tw@yahoocomtw
下一篇:fchang@iissinicaedutw
点击查看更多关于chang的相关文档
- 您可能感兴趣的
- chingchongchang yaowuchangan www.changgo.com wanchang 平chang教育局网 guangchangwu 长chang乐le gechang kohchang
- 大家在找
-
- · cad比例缩放命令
- · 水利工程施工合同
- · 凤台县案件
- · 掳袉禄啸袥芦袙笑褬袊袧袝袗袩肖谐路禄
- · 金工实习答案
- · 怎么在网上找兼职mm
- · 四川省太平
- · is7.1下载
- · 钢琴课教案
- · 悬挑板锚固长度
- · 甘肃省公安厅历任厅长
- · 九年级英语知识点
- · dnf辅助论坛
- · 华旗山楂果茶
- · 柱塞泵零件图
- · 新概念第四册课文mp3
- · 天下大同连老少网
- · 嵩山少林武术职业学院
- · 一年级数学ppt
- · 最好用的电驴
- · 维修工试题
- · 天津师范大学主页
- · 国际贸易实务胡丹婷
- · 钻石钱柜ktv
- · 盗情txt免费全集下载
- · 踏着烈士的足迹演讲稿
- · netscreen50
- · 学海无涯苦作舟的事例
- · 苹果4代itunes下载
- · 苏州到吴江盛泽
- 赞助商链接