• 中南大学概率论 > 中南大学学报(自然科学版)
  • 中南大学学报(自然科学版)

    免费下载 下载该文档 文档格式:PDF   更新时间:2009-12-03   下载次数:0   点击次数:2
    文档基本属性
    文档语言:Traditional Chinese
    文档格式:pdf
    文档作者:HSN
    关键词:
    主题:
    备注:
    点击这里显示更多文档属性
    第 40 卷第 5 期 2009 年 10 月
    中南大学学报(自然科学版) Journal of Central South University (Science and Technology)
    Vol.40 No.5 Oct. 2009
    人工免疫网络算法的改进及免疫优化应用
    郭鹏飞 1, 2,王 嘉 3,赵云丰 1
    (1. 北京科技大学 信息工程学院, 北京 100083; 2. 辽宁工程技术大学 软件学院,辽宁 葫芦岛,125000; 3. 煤炭科学研究总院 经济与信息研究所,北京 100013)
    摘 要:基于人工免疫网络算法(aiNet)模型,借鉴禁忌搜索算法(TS)的思想,提出一种禁忌搜索与人工免疫的混
    合算法,即人工免疫网络算法(TS-aiNet).在算法中引入禁忌表,禁忌那些在网络迭代中亲和度连续不再增加的细 胞,并通过特赦准则赦免一些被禁忌的优良状态;增加 1 个记忆表,用于保存成熟的记忆细胞;重新定义高斯变 异方式,以保证多样化的有效搜索.利用 Markov 链证明算法全局收敛性,通过对多个典型系统测试函数的仿真 实验定量分析该算法的性能, 并与经典克隆选择算法和 opt-aiNet 算法进行比较研究, 分析特征参数对算法性能的 影响.实验结果表明,该算法在多模态搜索空间中具有更强的全局收敛性,稳定性和寻找极值点能力,能够克服 早熟现象,是一种有效的全局优化搜索方法. 关键词:人工免疫;优化;免疫网络算法;禁忌搜索算法 中图分类号:TP18 文献标识码:A 文章编号:16727207(2009)05134509
    Improved artificial immune network algorithm and its application of immune optimization
    GUO Peng-fei1, 2, WANG Jia3, ZHAO Yun-feng1
    (1. School of Information Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Software College, LiaoNing Technical University, Huludao 125000, China; 3. Institute of Economy and Information, China Coal Research Institute, Beijing 100013, China)
    Abstract: A hybrid approach, tabu search artificial immune algorithm (TS-aiNet) was proposed based on aiNet model inspired by mechanism of tabu search algorithm. A tabu list was introduced to taboo such cell whose affinities didn't continuously increase any more in the network. In some phrases the tabooed excellent cells were released according to aspiration criteria. To save mature memory cells, a memory table was added to cells network. In addition, the expression of Gauss mutation was redefined for diversity search in the process of global optimization. Markov chain was applied to prove global convergence. Performance analysis of optimization was carried out based on random simulation of some typical systems, which was compared with that of KLONALG and opt-aiNet algorithms. Finally, the influence of feature parameters on TS-aiNet algorithm was analyzed. The simulation results show that the presented approach has preferable global convergent ability and stability in multi-modal search space, and can avoid prematurity effectively. So it is demonstrated as a global optimized algorithm with feasibility and high efficiency. Key words: artificial immune; optimization; artificial immune network algorithm; tabu search algorithm

    下一页

  • 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
  • 免费下载 PDF格式下载
  • 您可能感兴趣的
  • 大学概率论与数理统计  大学概率论课后答案  同济大学概率论答案  浙江大学概率论  大学概率论  概率论课件工商大学  济南大学概率论复习  大学概率论教程  大学概率论教程下载