Bayesian Learning Chapter 6: Bayesian Learning (Part 2)
CS 536: Machine Learning Littman (Wu, TA)
[Read Ch. 6, except 6.3] [Suggested exercises: 6.1, 6.2, 6.6] Bayes Theorem
MAP, ML hypotheses MAP learners Minimum description length principle Bayes optimal classier Nave Bayes learner (today) Example: Learning over text data (today) Bayesian belief networks (skim) Expectation Maximization algorithm (later)
Nave Bayes Classifier
Along with decision trees, neural networks, kNN, one of the most practical and most used learning methods. When to use: Moderate or large training set available Attributes that describe instances are conditionally independent given classification Successful applications: Diagnosis Classifying text documents
Nave Bayes Classifier
Assume target function f : X ! V, where each instance x described by attributes . Most probable value of f (x) is: vMAP = argmaxvj in V P(vj|a1, a2 … an) = argmaxvj in V P(a1, a2 … an, |vj) P(vj ) / P(a1, a2 … an) = argmaxvj in V P(a1, a2 … an, |vj) P(vj )
Nave Bayes Assumption
P(a1, a2 … an, |vj ) = #i P(ai |vj ), which gives Nave Bayes classifier: vNB = argmaxvj in V P(vj ) #i P(ai |vj ) Note: No search in training!
Nave Bayes Algorithm
Nave_Bayes_Learn(examples) For each target value vj ^ P(vj) " estimate P(vj) For each attribute value ai of each attribute a ^ P(ai|vj) " estimate P(ai|vj) Classify_New_Instance(x) ^ ^ vNB = argmaxvj in V P(vj) #i P(ai |vj)
Nave Bayes: Example
Consider PlayTennis again, and new instance Want to compute: vNB = argmaxvj in V P(vj) #i P(ai |vj)
Nave Bayes: Subtleties
1. Conditional independence assumption is often violated P(a1, a2 … an, |vj) = #i P(ai |vj) ...but it works surprisingly well anyway. Note don't need estimated posteriors P(vj|x) to be correct; need only that argmaxvj in V P(vj|a1, a2 … an) = argmaxvj in V P(vj) #i P(ai |vj) Domingos & Pazzani [1996] for analysis Nave Bayes posteriors often unrealistically close to 1 or 0
- ve修改器汉化版.rar > NaveBayesLearn(examples)
-
NaveBayesLearn(examples)
下载该文档 文档格式:PDF 更新时间:2004-10-06 下载次数:0 点击次数:2文档基本属性 文档语言: English 文档格式: pdf 文档作者: peter taylor 关键词: 主题: 备注: 点击这里显示更多文档属性 经理: 单位: umb gcoe 分类: 创建时间: 上次保存者: 修订次数: 编辑时间: 文档创建者: 修订: 加密标识: 幻灯片: 段落数: 字节数: 备注: 演示格式: 上次保存时间:
- 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
- PDF格式下载
- 更多文档...
-
上一篇:关于做好防范应对台风工作
下一篇:Veintemillas-Verdaguer
点击查看更多关于ve修改器汉化版.rar的相关文档
- 您可能感兴趣的
- ve过非法修改器.rar ve修改器汉化版 ve修改器汉化版下载 ve修改器绿色汉化版 cfve修改器汉化版 sd卡id修改器.rar 1942cdke修改器.rar ibdh2修改器.rar rtw人物修改器.rar 修改器汉化版
- 大家在找
-
- · 中学生安全教育黑板报
- · 贵州农村信用社
- · 证券公司内部控制指引
- · 一去二三里ppt课件
- · focke700
- · 高维函数模型偏导数
- · 内蒙古资产评估协会
- · 无线电子门铃原理
- · 出口制冷压缩机
- · 厂房平面图
- · 台州企业联系方式xls
- · 大众汽车变速器大连
- · 风机失速的概念
- · 活塞的机械加工工艺设计及夹具设计
- · 自考精密加工与特种加工试卷与答案
- · cxa1691
- · 一本书读懂中国史txt
- · 认识物体课件
- · 中文cad绘图软件下载
- · 启用javascript功能
- · 2011驾校c1模拟题
- · 北京东直门中医院网站
- · 山东定额测定费执行
- · 江西财经大学考研论坛
- · 正版xp序列号替换器
- · 颅脑损伤ppt
- · 周末同居床电影土豆网
- · 计算机操作员
- · 90后啤酒门事件
- · 电工证复审时间
- 赞助商链接