• ve修改器汉化版.rar > NaveBayesLearn(examples)
  • NaveBayesLearn(examples)

    免费下载 下载该文档 文档格式:PDF   更新时间:2004-10-06   下载次数:0   点击次数:2
    文档基本属性
    文档语言:English
    文档格式:pdf
    文档作者:peter taylor
    关键词:
    主题:
    备注:
    点击这里显示更多文档属性
    Bayesian Learning Chapter 6: Bayesian Learning (Part 2)
    CS 536: Machine Learning Littman (Wu, TA)
    [Read Ch. 6, except 6.3] [Suggested exercises: 6.1, 6.2, 6.6] Bayes Theorem
    MAP, ML hypotheses MAP learners Minimum description length principle Bayes optimal classier Nave Bayes learner (today) Example: Learning over text data (today) Bayesian belief networks (skim) Expectation Maximization algorithm (later)
    Nave Bayes Classifier
    Along with decision trees, neural networks, kNN, one of the most practical and most used learning methods. When to use: Moderate or large training set available Attributes that describe instances are conditionally independent given classification Successful applications: Diagnosis Classifying text documents
    Nave Bayes Classifier
    Assume target function f : X ! V, where each instance x described by attributes . Most probable value of f (x) is: vMAP = argmaxvj in V P(vj|a1, a2 … an) = argmaxvj in V P(a1, a2 … an, |vj) P(vj ) / P(a1, a2 … an) = argmaxvj in V P(a1, a2 … an, |vj) P(vj )
    Nave Bayes Assumption
    P(a1, a2 … an, |vj ) = #i P(ai |vj ), which gives Nave Bayes classifier: vNB = argmaxvj in V P(vj ) #i P(ai |vj ) Note: No search in training!
    Nave Bayes Algorithm
    Nave_Bayes_Learn(examples) For each target value vj ^ P(vj) " estimate P(vj) For each attribute value ai of each attribute a ^ P(ai|vj) " estimate P(ai|vj) Classify_New_Instance(x) ^ ^ vNB = argmaxvj in V P(vj) #i P(ai |vj)
    Nave Bayes: Example
    Consider PlayTennis again, and new instance Want to compute: vNB = argmaxvj in V P(vj) #i P(ai |vj)
    Nave Bayes: Subtleties
    1. Conditional independence assumption is often violated P(a1, a2 … an, |vj) = #i P(ai |vj) ...but it works surprisingly well anyway. Note don't need estimated posteriors P(vj|x) to be correct; need only that argmaxvj in V P(vj|a1, a2 … an) = argmaxvj in V P(vj) #i P(ai |vj) Domingos & Pazzani [1996] for analysis Nave Bayes posteriors often unrealistically close to 1 or 0

    下一页

  • 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
  • 免费下载 PDF格式下载
  • 您可能感兴趣的
  • ve过非法修改器.rar  ve修改器汉化版  ve修改器汉化版下载  ve修改器绿色汉化版  cfve修改器汉化版  sd卡id修改器.rar  1942cdke修改器.rar  ibdh2修改器.rar  rtw人物修改器.rar  修改器汉化版